(0) Obligation:
Runtime Complexity TRS:
The TRS R consists of the following rules:
f(f(X)) → c(n__f(n__g(n__f(X))))
c(X) → d(activate(X))
h(X) → c(n__d(X))
f(X) → n__f(X)
g(X) → n__g(X)
d(X) → n__d(X)
activate(n__f(X)) → f(activate(X))
activate(n__g(X)) → g(X)
activate(n__d(X)) → d(X)
activate(X) → X
Rewrite Strategy: INNERMOST
(1) CpxTrsToCdtProof (BOTH BOUNDS(ID, ID) transformation)
Converted CpxTRS to CDT
(2) Obligation:
Complexity Dependency Tuples Problem
Rules:
f(f(z0)) → c(n__f(n__g(n__f(z0))))
f(z0) → n__f(z0)
c(z0) → d(activate(z0))
h(z0) → c(n__d(z0))
g(z0) → n__g(z0)
d(z0) → n__d(z0)
activate(n__f(z0)) → f(activate(z0))
activate(n__g(z0)) → g(z0)
activate(n__d(z0)) → d(z0)
activate(z0) → z0
Tuples:
F(f(z0)) → c1(C(n__f(n__g(n__f(z0)))))
C(z0) → c3(D(activate(z0)), ACTIVATE(z0))
H(z0) → c4(C(n__d(z0)))
ACTIVATE(n__f(z0)) → c7(F(activate(z0)), ACTIVATE(z0))
ACTIVATE(n__g(z0)) → c8(G(z0))
ACTIVATE(n__d(z0)) → c9(D(z0))
S tuples:
F(f(z0)) → c1(C(n__f(n__g(n__f(z0)))))
C(z0) → c3(D(activate(z0)), ACTIVATE(z0))
H(z0) → c4(C(n__d(z0)))
ACTIVATE(n__f(z0)) → c7(F(activate(z0)), ACTIVATE(z0))
ACTIVATE(n__g(z0)) → c8(G(z0))
ACTIVATE(n__d(z0)) → c9(D(z0))
K tuples:none
Defined Rule Symbols:
f, c, h, g, d, activate
Defined Pair Symbols:
F, C, H, ACTIVATE
Compound Symbols:
c1, c3, c4, c7, c8, c9
(3) CdtUnreachableProof (EQUIVALENT transformation)
The following tuples could be removed as they are not reachable from basic start terms:
F(f(z0)) → c1(C(n__f(n__g(n__f(z0)))))
(4) Obligation:
Complexity Dependency Tuples Problem
Rules:
f(f(z0)) → c(n__f(n__g(n__f(z0))))
f(z0) → n__f(z0)
c(z0) → d(activate(z0))
h(z0) → c(n__d(z0))
g(z0) → n__g(z0)
d(z0) → n__d(z0)
activate(n__f(z0)) → f(activate(z0))
activate(n__g(z0)) → g(z0)
activate(n__d(z0)) → d(z0)
activate(z0) → z0
Tuples:
C(z0) → c3(D(activate(z0)), ACTIVATE(z0))
H(z0) → c4(C(n__d(z0)))
ACTIVATE(n__f(z0)) → c7(F(activate(z0)), ACTIVATE(z0))
ACTIVATE(n__g(z0)) → c8(G(z0))
ACTIVATE(n__d(z0)) → c9(D(z0))
S tuples:
C(z0) → c3(D(activate(z0)), ACTIVATE(z0))
H(z0) → c4(C(n__d(z0)))
ACTIVATE(n__f(z0)) → c7(F(activate(z0)), ACTIVATE(z0))
ACTIVATE(n__g(z0)) → c8(G(z0))
ACTIVATE(n__d(z0)) → c9(D(z0))
K tuples:none
Defined Rule Symbols:
f, c, h, g, d, activate
Defined Pair Symbols:
C, H, ACTIVATE
Compound Symbols:
c3, c4, c7, c8, c9
(5) CdtGraphRemoveDanglingProof (ComplexityIfPolyImplication transformation)
Removed 3 of 5 dangling nodes:
ACTIVATE(n__g(z0)) → c8(G(z0))
ACTIVATE(n__d(z0)) → c9(D(z0))
H(z0) → c4(C(n__d(z0)))
(6) Obligation:
Complexity Dependency Tuples Problem
Rules:
f(f(z0)) → c(n__f(n__g(n__f(z0))))
f(z0) → n__f(z0)
c(z0) → d(activate(z0))
h(z0) → c(n__d(z0))
g(z0) → n__g(z0)
d(z0) → n__d(z0)
activate(n__f(z0)) → f(activate(z0))
activate(n__g(z0)) → g(z0)
activate(n__d(z0)) → d(z0)
activate(z0) → z0
Tuples:
C(z0) → c3(D(activate(z0)), ACTIVATE(z0))
ACTIVATE(n__f(z0)) → c7(F(activate(z0)), ACTIVATE(z0))
S tuples:
C(z0) → c3(D(activate(z0)), ACTIVATE(z0))
ACTIVATE(n__f(z0)) → c7(F(activate(z0)), ACTIVATE(z0))
K tuples:none
Defined Rule Symbols:
f, c, h, g, d, activate
Defined Pair Symbols:
C, ACTIVATE
Compound Symbols:
c3, c7
(7) CdtGraphSplitRhsProof (BOTH BOUNDS(ID, ID) transformation)
Split RHS of tuples not part of any SCC
(8) Obligation:
Complexity Dependency Tuples Problem
Rules:
f(f(z0)) → c(n__f(n__g(n__f(z0))))
f(z0) → n__f(z0)
c(z0) → d(activate(z0))
h(z0) → c(n__d(z0))
g(z0) → n__g(z0)
d(z0) → n__d(z0)
activate(n__f(z0)) → f(activate(z0))
activate(n__g(z0)) → g(z0)
activate(n__d(z0)) → d(z0)
activate(z0) → z0
Tuples:
ACTIVATE(n__f(z0)) → c7(F(activate(z0)), ACTIVATE(z0))
C(z0) → c1(D(activate(z0)))
C(z0) → c1(ACTIVATE(z0))
S tuples:
ACTIVATE(n__f(z0)) → c7(F(activate(z0)), ACTIVATE(z0))
C(z0) → c1(D(activate(z0)))
C(z0) → c1(ACTIVATE(z0))
K tuples:none
Defined Rule Symbols:
f, c, h, g, d, activate
Defined Pair Symbols:
ACTIVATE, C
Compound Symbols:
c7, c1
(9) CdtGraphRemoveTrailingProof (BOTH BOUNDS(ID, ID) transformation)
Removed 2 trailing tuple parts
(10) Obligation:
Complexity Dependency Tuples Problem
Rules:
f(f(z0)) → c(n__f(n__g(n__f(z0))))
f(z0) → n__f(z0)
c(z0) → d(activate(z0))
h(z0) → c(n__d(z0))
g(z0) → n__g(z0)
d(z0) → n__d(z0)
activate(n__f(z0)) → f(activate(z0))
activate(n__g(z0)) → g(z0)
activate(n__d(z0)) → d(z0)
activate(z0) → z0
Tuples:
C(z0) → c1(ACTIVATE(z0))
ACTIVATE(n__f(z0)) → c7(ACTIVATE(z0))
C(z0) → c1
S tuples:
C(z0) → c1(ACTIVATE(z0))
ACTIVATE(n__f(z0)) → c7(ACTIVATE(z0))
C(z0) → c1
K tuples:none
Defined Rule Symbols:
f, c, h, g, d, activate
Defined Pair Symbols:
C, ACTIVATE
Compound Symbols:
c1, c7, c1
(11) CdtKnowledgeProof (EQUIVALENT transformation)
The following tuples could be moved from S to K by knowledge propagation:
C(z0) → c1(ACTIVATE(z0))
C(z0) → c1
(12) Obligation:
Complexity Dependency Tuples Problem
Rules:
f(f(z0)) → c(n__f(n__g(n__f(z0))))
f(z0) → n__f(z0)
c(z0) → d(activate(z0))
h(z0) → c(n__d(z0))
g(z0) → n__g(z0)
d(z0) → n__d(z0)
activate(n__f(z0)) → f(activate(z0))
activate(n__g(z0)) → g(z0)
activate(n__d(z0)) → d(z0)
activate(z0) → z0
Tuples:
C(z0) → c1(ACTIVATE(z0))
ACTIVATE(n__f(z0)) → c7(ACTIVATE(z0))
C(z0) → c1
S tuples:
ACTIVATE(n__f(z0)) → c7(ACTIVATE(z0))
K tuples:
C(z0) → c1(ACTIVATE(z0))
C(z0) → c1
Defined Rule Symbols:
f, c, h, g, d, activate
Defined Pair Symbols:
C, ACTIVATE
Compound Symbols:
c1, c7, c1
(13) CdtPolyRedPairProof (UPPER BOUND (ADD(O(n^1))) transformation)
Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.
ACTIVATE(n__f(z0)) → c7(ACTIVATE(z0))
We considered the (Usable) Rules:none
And the Tuples:
C(z0) → c1(ACTIVATE(z0))
ACTIVATE(n__f(z0)) → c7(ACTIVATE(z0))
C(z0) → c1
The order we found is given by the following interpretation:
Polynomial interpretation :
POL(ACTIVATE(x1)) = [3] + x1
POL(C(x1)) = [4] + [4]x1
POL(c1) = 0
POL(c1(x1)) = x1
POL(c7(x1)) = x1
POL(n__f(x1)) = [1] + x1
(14) Obligation:
Complexity Dependency Tuples Problem
Rules:
f(f(z0)) → c(n__f(n__g(n__f(z0))))
f(z0) → n__f(z0)
c(z0) → d(activate(z0))
h(z0) → c(n__d(z0))
g(z0) → n__g(z0)
d(z0) → n__d(z0)
activate(n__f(z0)) → f(activate(z0))
activate(n__g(z0)) → g(z0)
activate(n__d(z0)) → d(z0)
activate(z0) → z0
Tuples:
C(z0) → c1(ACTIVATE(z0))
ACTIVATE(n__f(z0)) → c7(ACTIVATE(z0))
C(z0) → c1
S tuples:none
K tuples:
C(z0) → c1(ACTIVATE(z0))
C(z0) → c1
ACTIVATE(n__f(z0)) → c7(ACTIVATE(z0))
Defined Rule Symbols:
f, c, h, g, d, activate
Defined Pair Symbols:
C, ACTIVATE
Compound Symbols:
c1, c7, c1
(15) SIsEmptyProof (EQUIVALENT transformation)
The set S is empty
(16) BOUNDS(O(1), O(1))